The Peeling Process of Infinite Boltzmann Planar Maps
نویسنده
چکیده
We start by studying a peeling process on finite random planar maps with faces of arbitrary degrees determined by a general weight sequence, which satisfies an admissibility criterion. The corresponding perimeter process is identified as a biased random walk, in terms of which the admissibility criterion has a very simple interpretation. The finite random planar maps under consideration were recently proved to possess a well-defined local limit known as the infinite Boltzmann planar map (IBPM). Inspired by recent work of Curien and Le Gall, we show that the peeling process on the IBPM can be obtained from the peeling process of finite random maps by conditioning the perimeter process to stay positive. The simplicity of the resulting description of the peeling process allows us to obtain the scaling limit of the associated perimeter and volume process for arbitrary regular critical weight sequences.
منابع مشابه
Percolation on uniform infinite planar maps
We construct the uniform infinite planar map (UIPM), obtained as the n → ∞ local limit of planar maps with n edges, chosen uniformly at random. We then describe how the UIPM can be sampled using a “peeling” process, in a similar way as for uniform triangulations. This process allows us to prove that for bond and site percolation on the UIPM, the percolation thresholds are p c = 1/2 and p site c...
متن کاملA Boltzmann approach to percolation on random triangulations
We study the percolation model on Boltzmann triangulations using a generating function approach. More precisely, we consider a Boltzmann model on the set of finite planar triangulations, together with a percolation configuration (either site-percolation or bondpercolation) on this triangulation. By enumerating triangulations with boundaries according to both the boundary length and the number o...
متن کاملAn invariance principle for random planar maps
We show a new invariance principle for the radius and other functionals of a class of conditioned ‘Boltzmann-Gibbs’distributed random planar maps. It improves over the more restrictive case of bipartite maps that was discussed in Marckert and Miermont (2006). As in the latter paper, we make use of a bijection between planar maps and a class of labelled multitype trees, due to Bouttier et al. (2...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملScaling of Percolation on Infinite Planar Maps, I
We consider several aspects of the scaling limit of percolation on random planar triangulations, both finite and infinite. The equivalents for random maps of Cardy’s formula for the limit under scaling of various crossing probabilities are given. The limit probabilities are expressed in terms of simple events regarding Airy-Lévy processes. Some explicit formulas for limit probabilities follow f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2016